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Abstract

Vaccination is the most effective means to prevent influenza and its serious complications. 

Influenza viral strains undergo rapid mutations of the surface proteins hemagglutinin (HA) and 

neuraminidase (NA) requiring vaccines to be frequently updated to include current circulating 

strains. It is nearly impossible to predict which strains will be circulating in the next influenza 

season. It is, therefore, imperative that the process of producing a vaccine be streamlined and as 

swift as possible. We have developed an isotope dilution mass spectrometry (IDMS) method to 

quantify HA and NA in H7N7, H7N2, and H7N9 influenza. The IDMS method involves 

enzymatic digestion of viral proteins and the specific detection of evolutionarily conserved target 

peptides. The four target peptides that were initially chosen for analysis of the HA protein of 

H7N2 and H7N7 subtypes were conserved and available for analysis of the H7N9 subtype that 

circulated in China in the spring of 2013. Thus, rapid response to the potential pandemic was 

realized. Multiple peptides are used to quantify a protein to ensure that the digestion of the protein 

is complete in the region of the target peptides, verify the accuracy of the measurement, and 

provide flexibility in the case of amino acid changes among newly emerging strains. The IDMS 

method is an accurate, sensitive, and selective method to quantify the amount of HA and NA 

antigens in primary liquid standards, crude allantoic fluid, purified virus samples, and final vaccine 

presentations.
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Introduction

Vaccination is the key strategy to prevent severe illness and death from influenza. Vaccine 

manufacturers, government regulatory agencies, and public health agencies face many 

challenges in the effort to develop human vaccines against avian influenzas.1 Influenza 

viruses contain two major surface proteins, hemagglutinin (HA) and neuraminidase (NA). 

HA is the primary antigen in influenza vaccines. The HA and NA are subject to either subtle 

or radical mutations that occur continually. Because of these changes, the influenza vaccines 

are usually updated each year.2

There are two groups of avian influenza virus. One group is highly pathogenic avian 

influenza (HPAI) and has a mortality that can be as high as 100% while the other group is 

low pathogenic avian influenza (LPAI). LPAI viruses cause a much milder, primarily 

respiratory disease, which may be aggravated by other infections or environmental 

conditions.3 HPAI subtypes have been limited to H5 and H7, but not all H5 and H7 subtypes 

are HPAI. The H7N9 subtype is unique as it is of low pathogenicity to birds while being 

highly pathogenic to humans making it very difficult to track and detect outbreaks.4

Recently, there have been several outbreaks of avian influenza. The first human cases of 

avian influenza A virus (H5N1) were reported in 1997 in Hong Kong after exposure to 

infected poultry.5,6 A highly pathogenic avian influenza virus caused disease in poultry in at 

least eight East Asian countries between 2003 and 2004. Fatalities among humans have been 

attributed to H5N1 in Cambodia, China, Indonesia, Thailand, and Vietnam.7 Thailand alone 

reported a total of 17 cases of H5N1 influenza which coincided with the disease observed in 

poultry.8 Human cases continued to be reported in Egypt, Iraq, Turkey, Djibouti, and 

Azerbaijan.9

The production of the vaccine for the H5N1 virus faced several challenges. The first batch of 

inactivated human influenza vaccine against the1997 H5N1 virus was not ready for clinical 

trial until 7 months after the second case of human infection arose. The success of the 

vaccine against this virus is still unclear.10 A main cause for this delay in the production of 

an H5N1-specific vaccine was the nature of the virus itself. The H5N1 virus is highly 

pathogenic in both humans and poultry. The agent must be handled, at a minimum, under 

biosafety level 3 (BSL3) conditions. It can also be detrimental to fertilized chicken eggs, 

which is the standard medium for the reassortment and spread of influenza virus before it is 

inactivated and formulated for use in vaccines.11 Furthermore, the emergence of 

antigenically distinct groups of influenza viruses poses a significant challenge for the design 

of vaccines against H5N1 viruses because of the possible need for group-specific vaccines.12

The H7 subtype viruses, which include the North American lineages (H7N2 and H7N3) and 

Eurasian lineages (H7N7, H7N3 and H7N9), have caused human disease.13,14 These avian 

flu viruses can infect humans, birds, pigs, seals and horses in the wild and have infected 
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mice in laboratory studies. Between February and May 2003, a serious outbreak occurred in 

the Netherlands.15 A highly pathogenic avian influenza A virus of subtype H7N7, closely 

related to low pathogenic virus isolates obtained from ducks was also isolated in chickens. 

This virus was later detected in 86 humans who handled affected poultry and in three of their 

family members.16 Influenza-like illnesses were generally mild, but a fatal case of 

pneumonia in combination with acute respiratory distress syndrome did occur.16 Because 

humans are rarely exposed to H7N7, there is little or no antibody protection against these 

viruses in the general population. If a person were to become infected with H7N7 and the 

virus gain the capability to spread efficiently from person to person, an influenza pandemic 

could begin.

The first identified cases of human infection with a novel influenza A (H7N9) virus occurred 

in eastern China during March and April 2013. The H7N9 virus causes rapidly progressive 

pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), and fatal 

outcomes.17,18 The H7N9 virus subtype have infected 128 and killed 26 people in China as 

of May 1, 2013.4 Fortunately, there have not been any confirmed cases of human-to-human 

transmission, but if there had been, we could have had a pandemic with no vaccine available. 

HA and NA genes in the H7N9 strain probably originated from Eurasian avian influenza 

viruses; the remaining genes are closely associated to avian H9N2 influenza viruses.19 H7 

subtype vaccine production will face the same potential problems and similar challenges to 

those of the H5 subtype because they are antigenically distinct. After the unprecedented 

geographic spread of H5 subtype viruses since 2003, the continued occurrence of random 

cases of H5N1 infections in humans, and the recent outbreaks of H7N9 in China, major 

importance has been given to the pandemic threat posed by the H5 and H7 avian influenza 

viruses.

Regulatory standards require that seasonal influenza vaccines contain 30 μg/mL of HA for 

each strain of influenza. A trivalent vaccine containing strains of H1N1, H3N2, and B 

should therefore contain 90 μg/mL of total HA. The United States does not require a 

commercial vaccine to contain NA. However, vaccines sold in European nations are required 

to exhibit proof that the vaccine includes NA, even though no specified amount is required. 

HA is currently quantified using the single radial immuno-diffusion (SRID) assay. This 

method involves strain-specific reagents including a purified whole virus HA preparation 

and anti-HA sheep serum.20, 21 Barring any unforeseen complications, production and 

characterization of SRID reagents can take approximately 2–3 months to complete. 

Manufacturers are unable to formulate, fill, or release the pandemic vaccine doses until 

successful quantification of HA by SRID which necessarily requires waiting on the strain-

specific SRID reagents. Adding the requirement of quantification of NA using SRID would 

increase the vaccine production time schedule since production of strain-specific NA 

reagents would also be required. Since the limit of quantification of SRID is approximately 

4 μg/ mL, SRID is not sufficiently sensitive for the quantification of NA. HA is the most 

abundant protein on the surface of the virus with NA being at least 3 or more times less 

abundant. Therefore, SRID would not be an appropriate method for NA quantification in 

final presentations of most seasonal vaccines as NA would likely be at concentrations less 

than 4 μg/mL.
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We have previously described an isotopic dilution mass spectrometry or IDMS method to 

quantify the viral proteins of H5, H3, and H1 subtypes as well as influenza B.22,23 We have 

expanded this method to quantify HA and NA in H7N7, H7N2, and H7N9 influenza samples 

in a single run. The IDMS method involves enzymatic digestion of viral proteins and the 

specific detection of evolutionarily conserved target peptides. Four HA peptides were used 

for the quantification of HA in all H7 samples while peptides specific to N2, N7, and N9 

were used for each type of neuraminidase. The use of multiple peptides in the analysis 

ensures complete digestion of the protein in the vicinity of the target peptides, which is 

crucial for accuracy of the measurement and provides redundancy in the case of amino acid 

changes among newly emerging strains. Choosing target peptides that can cover the majority 

of strains of interest or of future potential interest is ideal so that fewer peptide standards 

have to be generated or updated annually. However, should the strain of interest be a novel 

one not covered by the selected target peptides, it is a simple matter to detect the difference 

and quickly synthesize and prepare a new peptide standard. This process takes two weeks.23 

The IDMS method is an accurate, sensitive, and selective method to quantify the amount of 

HA and NA antigens in a variety of matrices including crude allantoic fluid, purified virus 

samples, and final vaccine presentations.

Materials and Methods

Virus and Samples

An inactivated whole virus preparation from the A/Netherlands/219/2003 (H7N7) was 

provided by the U.S. Food and Drug Administration’s Center for Biologics Evaluation and 

Research (CBER) and was used without further purification. Virus samples in allantoic fluid 

and purified virus of the A/Shanghai/2/2013 (H7N9) were obtained from the National Center 

for Immunization and Respiratory Diseases (NCIRD), Influenza Division, Centers for 

Disease Control and Prevention (CDC) and used without further purification.

Synthesis of Native and Labeled Peptides

The HA and NA peptides were custom synthesized at a 1–5 mg scale by MidWest Bio-Tech, 

Inc. (Fishers, IN). The targeted peptides are listed in Table 1. The 5 mg vials of the peptides 

were reconstituted by adding 8 mL of 10% formic acid. Then, they were diluted by adding 

48 mL of 0.1% formic acid to 2 mL of the peptide. Each peptide was separated into four 

aliquots. These peptides were aliquoted in 200 μL volumes into 1.5 mL vials using an 

automated liquid handler (Beckman Coulter, Fullerton, CA). They were later lyophilized and 

stored at −70°C until used. Each vial should contain 3–6 nmol of peptide. An isobaric-

tagged isotope dilution mass spectrometry (IT-IDMS) method for amino acid analysis 

(AAA) was used to quantify the peptides. The IT-IDMS method incorporates NIST certified 

isotopically labeled amino acids as internal standards to ensure accurate results.24

A labeled analog of the target peptides STQSAIDQITGK and FYALSQGTTIR were made 

by incorporating the isoleucine closest to the carboxy terminus with 13C and 15N to give a 

peptide that is 7 Da heavier than the native peptide. Leucine was 13C and 15N labeled to give 

a peptide that is 7 Da heavier than the native peptide for VNTLTER, VPNALTDDR and 

FVNEEALR. For IQIDPVK, IGESSDVLVTR and FGESEQIIVTR, valine was 13C and 15N 
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labeled resulting in a peptide that is 6 Da heavier than the native peptide. The carboxy-

terminal proline was similarly labeled for the peptide IPNAGTDPNSR producing a peptide 

that is 8 Da heavier than the native peptide. A labeled analogue of the target peptide 

SGYETFR was synthesized by incorporating 13C and 15N labeled phenylalanine to give a 

peptide that is 10 Da heavier than the native peptide.

Preparation of Working Stock, Calibration, and Labeled Solutions

The native and labeled peptide standards were reconstituted by adding 100 μL of 10% (v/v) 

formic acid and diluted with 0.1% (v/v) formic acid to yield a 5 pmol/μL stock solution. In 

order to facilitate the sample preparation of unknowns, a 0.5 pmol/μL cocktail of the ten 

labeled H7,N7,N2 and N9 peptides was made by adding 100 μL of each appropriately 

reconstituted peptide. These cocktails were dried via lyophilization, stored at −70° C until 

needed, and then reconstituted in 0.1% formic acid (v/v) in water. A similar cocktail was 

made with the ten native H7, N7, N2 and N9 peptides. Two vials were used to prepare the 

calibration standards for all peptides used in the analysis in order to minimize the chances 

for error. Seven-point calibration curves were prepared using the 0.5 pmol/μL solutions of 

the native and labeled cocktails at average levels of 10, 30, 50, 70, 90, 180, and 250 fmol/μL. 

The 0.5 pmol/μL spiked solutions of the labeled peptides were used for the internal 

standards. Mean area ratios (unlabeled/labeled) were plotted against concentrations for each 

standard. Linear regression without weighting was applied to the data sets, and calibration 

curves were generated for each peptide. We found the corresponding R2 values of 0.9975, 

0.9968, 0.9981, 0.9949, 0.9955 and 0.9925 for VNTLTER, IPNAGTDPNSR, FVNEEALR, 

IQIDPVK, STQSAIDQITGK and FGESEQIIVTR, respectively.

Sample Preparation and LC-MS/MS Quantification

A volume of 20 μL of the A/Netherlands/219/2003 (H7N7) sample was used in the digestion 

protocol. A purified virus sample of the A/Shanghai/2/2013 (H7N9) was separately diluted 

to a 1:5 ratio with 50 mM ammonium bicarbonate solution containing 0.1% RapiGest SF 

(Waters Corporation, Milford, MA). A volume of 10 μL of the resulting diluted H7N9 

purified virus was used for sample digestion. A volume of 10 μL of 0.2% Rapigest was 

added to the sample and it was boiled for 5 min at 100°C. After to room temperature, 5 μL 

(~86 pmol) of sequencing grade modified trypsin (Promega, Madison, WI) were added to 

each sample and incubated at 37°C for 2 hr. The digested samples were cooled to room 

temperature, and 10 μL of 0.475 M HCl was added to reduce the pH to 2.0 to cleave the acid 

labile surfactant.25 To the resulting mixture, 10 μL each of the 0.5 pmol/μL H7, N7, N2 and 

N9 labeled cocktail solution was added. A 0.1% formic acid solution was used to dilute the 

final sample volume to 100 μL. The digested H7N7 and H7N9 samples were prepared 

separately, centrifuged for 10 sec (3,000 x g), and transferred to autosampler vials where 

they ran on the same LC-MS/MS analysis.

LC/MS/MS Instrumentation Parameters

Peptides were separated using an Agilent Technologies 1200 Series Quaternary pump and a 

High-Performance Autosampler G-1367B HiP-ALS. The analytical column was a 150 mm × 

1 mm i.d. Symmetry300 reverse phase C18 (3.5 μm particle size, Waters Corporation, 

Milford, MA). The aqueous mobile phase (A) consisted of HPLC-grade water with 0.1% 
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formic acid, while the organic phase (B) was acetonitrile (ACN) with 0.1% formic acid. A 5-

μL volume injection was utilized. The gradient profile utilized a 150 μL/min flow rate. 

Initially, the mobile phase, consisting of 98% A and 2% B, was held constant for 5 min. A 

1.2% change per min was then utilized over the next 15 min, where the mobile phases were 

80% A and 20% B, respectively, followed by a 1.0% change per min over the next 5 min, 

where the mobile phases were 75% and 25%, respectively. After 37 min run time, the 

gradient was increased to 98% A and 2% B for the next 20 min to equilibrate the column to 

its initial conditions. The total run time was 57 min.

The eluent was introduced into a Thermo Scientific Vantage TSQ triple quadrupole tandem 

mass spectrometer with an electrospray interface (Thermo Scientific, Waltham, MA). The 

TSQ mass spectrometer was operated in positive ion mode. Table 1 shows the multiple 

reaction monitoring (MRM) 26m/z with quantifying ion pair transitions. Two additional ion 

transition pairs utilizing the same conditions were monitored for HA peptide confirmation 

and are provided in Table 1. Two peptide transitional pairs were monitored for each NA 

protein: one for detection purposes and two for confirmation. The TSQ parameters were as 

follows: spray voltage 3400 V, sheath gas 20, auxiliary gas 0, capillary tube temperature 

300°C, and a collision gas of 1.5 mTorr. Collision energies and tube lens were optimized for 

each peptide. Data processing and instrument control were performed with the Thermo 

Scientific Xcalibur software.

QC Preparation and LC-MS/MS Quantification

A QC material was prepared using an expired commercial monovalent H1N1 vaccine. To 

this vaccine matrix, the native peptides of the H7N7, H7N2, and H7N9 subtypes were 

added. A 5 μL spike was used for the low QC while a 10 μL spike was used for the high QC. 

The digestion efficiency of the HA and NA of the H1N1 strain was monitored. This QC 

material was prepared and analyzed using the same protocol and LC/MS/MS instrument 

method as unknown samples. Characterization of the QC material was completed by 

preparing 20 individual samples on 20 different days. Modified Westgard rules26 were 

followed to determine QC limits and to report the data.

Results and Discussion

The ability to quantify the viral proteins of the H7N7, H7N2, and H7N9 influenza strains 

with improved accuracy, precision, and strain specificity of HA and NA may reduce the time 

needed to develop vaccines against newly emerging influenza viruses. Isotope dilution mass 

spectrometry (IDMS) for accurate quantification of proteins in complex mixtures was 

demonstrated in our laboratory in 199627 and has been expanded to include quantification of 

viral proteins in seasonal vaccine strains. Tryptic peptides conserved among the H7N7, 

H7N2, and H7N9 proteins were identified, selected as stoichiometric representatives of the 

HA and NA proteins from which they were cleaved, and quantified against a spiked internal 

standard to yield a measure of protein concentration. The standard procedure in our method 

uses enzymatic digestion to generate unique viral peptide fragments, separation of these 

peptides by liquid chromatography and quantification by multiple-reaction monitoring 

(MRM).22,23 The steps taken to assure complete digestion of the viral proteins have been 

previously discussed. 28
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In order to assure complete digestion of HA and NA in the region of the target peptides of 

the virus strain of interest, we quantified four unique peptides from different regions of HA 

protein, two unique peptides from the NA of N7 strains, one peptide from the NA of N2 

strains, and three peptides from the NA of N9 strains. The amino acid sequences for HA and 

NA proteins are shown in Figure 1. The target peptides used for quantitation are underlined. 

Obtaining similar results using at least two peptides that are quantified independently 

demonstrate that the protein is completely digested in the region of the target peptides.

There are several key steps to follow when choosing peptides to use for targeted protein 

quantification. Others have described the general rules on choosing the best peptides for 

quantification.29 Briefly, IDMS is a targeted quantification method and requires knowledge 

of the accurate mass of the peptides to be used for quantification. Amino acids that can be 

readily modified must be avoided in the chosen target peptide. Also, sample preparation 

protocols that induce changes in the molecular weight of an amino acid are not desired 

unless conversion is 100% efficient. For this reason, reduction and alkylation of the sample 

is not part of our sample digestion procedure. Peptides that contain oxidizable amino acids 

(methionine or tryptophan) or cysteine which might be involved in a disulfide bond with 

another cysteine in a distal region of the protein are not chosen as quantification targets.30 

Peptides containing an N-linked glycosylation consensus sequence are avoided as 

glycosylation is a very heterogeneous post-translational modification in which the mass of 

the glycan cannot be accurately predicted.31

To avoid the need to make new standards annually, we aim for target peptides that are 

conserved throughout the subtype. We chose four peptides for the quantification of the HA 

of the influenza H7. Two of the peptides are on the HA1 portion of the protein while the 

other two are on HA2 The amino acid sequences of several strains of H7 (H7N2, H7N3, 

H7N7, and H7N9) is shown in Figure 2. Even though the subtypes are different and the 

strains were collected in various regions of the world including Mexico, China, United 

States, and the Netherlands, the same four regions of the protein sequence could be targeted 

by IDMS. The peptides and the extent to which they are conserved throughout the subtype 

are shown in Table 2. STQSAIDQITGK is conserved in 1178 of the 1463 strains (81%) that 

have been sequenced in this region of the protein and for all available sequences deposited in 

the NCBI Influenza Virus Resource Database as of July 24, 2013.32 The VNTLTER is 

conserved in 1116 of the 1463 strains (76%) while the IQIDPVK is conserved in 1120 of the 

1463 strains (77%). FVNEEALR is conserved in 434 strains while a peptide with two amino 

acid differences (FTNEESLR) was present in 800 of the strains in the database. Both 

sequences combined are conserved in 1234 of the 1463 strains (84%). To increase the 

chances of quantifying any H7 strain, we incorporated both FVNEEALR and FTNEESLR in 

our method.

Our efforts were focused on identifying conserved peptides among HA subtypes of concern, 

(either seasonal influenza viruses or emerging avian viruses with pandemic potential (i.e., 

H7 from H7N9)). Therefore, peptides had been prepared in anticipation of H7N7 or H7N2 

strains of influenza. These peptides were conserved and applicable for quantitation of HA in 

the H7N9 strains that were circulating in China in the spring of 2013. However, we had not 

prepared standards suitable for the analysis of NA of N9 strains. We were able to rapidly 
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identify three target peptides for NA of N9 sequences and new isotopically labeled peptides 

were synthesized and accurately characterized in a matter of two weeks. By anticipating 

potential circulating influenza subtypes and choosing peptides that are conserved within the 

subtype allows for a quantitative method to be developed for a broader range of influenza 

strains. The flexibility of the IDMS method and the straight-forward manner in which 

peptide standards are produced allows rapid method development, if necessary, and 

quantification of HA in newly emerging strains of influenza. The implementation of IDMS, 

therefore, could shorten development time for new vaccines.

The N9 peptide IGESSDVLVTR is only present in 67 of the 538 N9 strains that had been 

deposited in the NCBI database. IGENSDVLVTR in and IGEDSDVLVTR are the peptides 

that are present in other strains of H9. Combined, these three peptides would cover 89% of 

the strains that had been deposited in the NCBI database. IGENSDVLVTR would be a 

necessary peptide to quantify H2N9 while H11N9 would be quantified using 

IGEDSDVLVTR. Since we are currently focused only on the analysis H7N9, only 

IGESSDVLVTR was prepared as a standard. The FYALSQGTTIR peptide is present in 502 

of the 538 N9 strains (93%) in the NCBI database. The sequence VPNALTDDR is present in 

499 of the 538 strains (93%). These two peptides would be useful for the quantification of 

all N9 strains, even those of H2N9 and H11N9.

Two peptides, IPNAGTDPNSR and FGESEQIIVTR, are incorporated into this method for 

the quantification of N7. When all strains of N7 are considered, there are two closely related 

peptides that cover 83% of the strains. IPNAGTDPNSR and IPNAETDPNSK, when 

combined, cover 572 of the 688 strains. However, IPNAETDPNSK is present predominantly 

in H10N7 strains, not H7N7 strains. That peptide, therefore, was not prepared as a standard 

and is shown in Figure 2 in grey font since it is not useful for the analysis of the H7N7 or the 

H7N9 strains. However, it would need to be prepared if H10N7 strains ever became of 

interest. The second N7 peptide, FGESEQIIVTR, is present in 542 of the 688 (79%) N7 

strains in the NCBI database which suggests that this peptide would work for both H7N7 

and H10N7 strains. The peptide used to quantify N2 strains, SGYETFR, is present in 1249 

of the 1693 N2 sequences (74%) in the NCBI database.

Quantification of N2 neuraminidase was integrated into the method, but currently only one 

peptide is used. If regulatory agencies become interested in quantifying NA, then the time 

and cost required to add additional peptides to the method may be justified. However, since 

NA is digested and quantified at the same time as HA, we assume that if digestion is 

complete for H7, N7, and N9, which all include multiple peptide targets for each protein that 

it is likely complete for similarly sized N2. One peptide is sufficient for protein 

quantification purposes related to research or characterization.

Chromatograms of the peptide pairs corresponding to HA and NA of the H7N7 subtype are 

shown in Figure 3. All six peptides are analyzed in one analytical run. The area ratio 

between the native peptide and the isotopically labeled peptide is calculated and compared 

to that of the known standard amounts used to generate the calibration curve. The IDMS 

method, which is a targeted method, provides a chromatographic reference for peak 

selection and adds another degree of selectivity to the method. The clarity of this 
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chromatogram is typical of any sample regardless of matrix. Thus IDMS is able to quantify 

viral proteins from purified samples, split and subunit vaccine preparations, and even crude 

allantoic fluid.

Typical quantitative results are presented in Table 3. Since the assumption is that one mole 

of peptide equals one mole of protein, each peptide is an independent quantitative 

measurement of the amount of protein in the sample. The method requires complete 

digestion in the region of the peptide for an accurate measurement. Similar quantitative 

results using multiple peptides provide assurance that the digestion of the protein in the 

region of the target peptides is complete and that the method produces an accurate result. 

The inactivated whole virus sample of the A/Netherlands/219/2003 (H7N7) and the purified 

virus A/Shanghai/2/2013 (H7N9) were analyzed using the same comprehensive method. In 

one analytical run, all four HA peptides from the two H7 strains were analyzed as were the 

NA peptides. The values obtained using the various peptides were then averaged. The 

average amount of HA in the inactivated whole virus sample A/Netherlands/219/2003 

(H7N7) using all four H7 peptides was calculated to be 81.8 fmol/μL. The average value 

obtained using the two N7 peptides was 35.8 fmol/μL. A 10 μL aliquot of the purified virus 

A/Shanghai/2/2013 (H7N9) contained 150.0 fmol/μL of HA and 12.7 fmol/μL of NA 

determined by three N9 peptides. A final vaccine preparation contains 30 μg/mL (40 fmol/

μL) of HA. The sensitivity of the IDMS method is such that HA levels as low as 1.5 μg/mL 

can be quantified—an amount much lower than required by regulatory agencies.

Conclusions

We have developed an accurate and precise isotope-dilution mass spectrometry (IDMS) 

method using a purified virus preparation of A/Netherlands/219/2003 (H7N7) to quantify 

the HA and the NA proteins in one analytical run. This IDMS method was also adapted for 

N2 and N9 neuraminidases and is also successfully used for quantifying the HA and NA 

content in the purified virus sample of A/Shanghai/2/2013 (H7N9). IDMS is an accurate, 

precise, and sensitive method that can be used to quantify multiple influenza viral proteins. 

The mass spectrometer offers a high level of selectivity based on the mass (and therefore, 

amino acid sequence of the peptide) so that multiple proteins from different viral subtypes 

can be simultaneously quantified. The IDMS method utilizes peptides that are conserved 

among H7, N7, N2 and N9 strains to provide insurance that the protein can be quantified 

regardless of strain. However, should a strain emerge that has a mutation in the selected 

peptide, the sequence of a new peptide target can easily be identified and new peptide 

standards can be synthesized and accurately characterized in a matter of a few weeks. The 

flexibility and sensitivity of the IDMS method would enable rapid quantification of HA in 

newly emerging strains of influenza, and consequently, it would shorten development time 

for new vaccines.
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Figure 1. 
The amino acid sequences of the HA and NA proteins of the H7N7 strains and the NA of the 

H7N2 and the H7N9 proteins are shown with target peptides in bold and underlined. To 

ensure complete protein digestions, four unique H7 peptides were chosen from different 

regions of the HA protein. Obtaining similar results using at least two peptides located in 

different regions demonstrates that the protein is completely digested in the region of the 

peptides used for protein quantitation.
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Figure 2. 
Amino acid sequence of strains of H7N7, H7N2, H7N3, and H7N9 showing the conserved 

peptides used for IDMS quantification of HA. The peptides chosen can be used to quantify 

strains collected from various areas of the world including China, Mexico, United States, 

and the Netherlands.
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Figure 3. 
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) extracted ion 

chromatograms of target H7 and N7 peptides for quantifying a standard in which 6 peptide 

pairs were simultaneously monitored. Amino Acids shown in red are 13C and 15N stable 

isotope labeled. Data were acquired on a Thermo Scientific TSQ Vantage.
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